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Abstract

Effective elastic properties of the nanocomposites filled with carbon nanotubes (CNTs) are investigated by the asymptotic expansion

homogenization (AEH) method. In order to implement the homogenization method, a control volume finite element method (CVFEM) is

employed in contrast to the previous studies. It is assumed that the nanocomposites have geometric periodicity with respect to local length scale

and the elastic properties of nanocomposites can be represented by those of the representative volume element (RVE). Random orientation of the

CNTs embedded in the nanocomposites is considered by using the orientation tensor. The effective elasticity tensor predicted by the

homogenization method is compared with analytical and experimental results. In the experiment, the CNT surface is treated by oxygen plasma to

improve interfacial bonding between the CNT and the matrix and to disperse the CNTs homogeneously in epoxy resin because the perfect

interfacial bonding is presumed in the homogenization method. Homogeneous CNT dispersion is experimentally identified by the field emission

scanning electronic microscope (FESEM). It is found that the numerically calculated elastic modulus is in good agreement with that obtained by

analytic model.
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1. Introduction

Polymeric nanocomposites filled with such nanoparticles as

carbon nanotubes, nanoclays, and nanofibers have attracted a

large amount of attention to achieve more enhanced

mechanical, thermal, and electrical properties than conven-

tional composites [1]. Especially, it has been addressed that the

carbon nanotube (CNT) has outstanding Young’s modulus and

tensile strength and is one of the most promising materials with

potential as an ultimate reinforcing material in the nanocom-

posites [2–4]. Previous studies on the mechanical properties of

the CNT show that it has quite broad variation of the Young’s

modulus ranging from 200 to 4 TPa, tensile strength from 10 to

200 GPa, and bending strength of about 20 GPa [5–8]. The

measured and predicted mechanical properties of CNTs are

varied depending on the size of the CNT, structure of the CNT,

and experimental tools such as atomic force microscope

(AFM) or transmission electron microscope (TEM).
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Many experimental investigations on mechanical properties

of the CNT filled nanocomposites have been carried out but

more studies are needed to realize the potential of CNTs as the

reinforcement [9–11]. In the case of layered silicate polymer

composites, quite a few studies have been performed to obtain

the mechanical properties numerically and theoretically and

considerable achievements are reported [12–19].

Numerical computation of the material properties including

mechanical, thermal, and electrical properties is a challenging

task for producing and designing a novel nanocomposite. The

computational approach can be divided into two methods, i.e.

molecular dynamics (MD) and continuum mechanics based

methods. The MD has yielded many simulation results to

understand the behavior of individual and bundled CNTs.

Either computational power or numerical algorithm for the MD

has been improved rapidly. However, the MD is still limited to

simulation of a system containing 106–108 atoms for the period

of a few nanoseconds, that is, very small length and time scales.

The MD simulation has difficulties in handling nanocomposites

with large length and time scales. Therefore, the simulation for

larger systems or longer time is currently left to continuum

mechanics method. The continuum mechanics based approach

which also includes analytic theories such as Halpin–Tsai Eq.

[20] or Mori–Tanaka Eq. [21] still needs validation process to
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get rid of doubts on acceptability but is efficient enough to

obtain the mechanical properties of nanocomposites with

minimum time and cost.

Studies on numerical calculation of the mechanical proper-

ties of the nanocomposites filled with CNTs have been rarely

reported [22–25]. Chen and Liu [24,25] evaluated effective

mechanical properties of the nanocomposites embedded with

the CNT using a representative volume element (RVE) and

finite element method (FEM) and provided numerical results

accordant with experimental ones.

There are plenty of studies on prediction of physical

properties by using the homogenization method for composite

materials with periodic microstructure [26–37]. Most of them

are carried out to obtain the effective mechanical properties of

composites reinforced by continuous fiber structures such as

woven fabrics and braided preforms based on the finite element

method (FEM) and the boundary element method (BEM)

[35,36]. The homogenization method is a powerful tool by

which a heterogeneous medium is transformed to the

equivalent homogeneous medium with the same internal

energy as shown in Fig. 1. The asymptotic expansion

homogenization (AEH) method adopted in this study is able

to perform both localization and homogenization for the

heterogeneous medium. The homogenization method assumes

that all the physical quantities vary in both local and global

scales and the quantities are periodic with respect to the local

scale due to the periodicity of the geometrical microstructure.

As the periodic dimension approaches zero, the homogenized

effective material properties are obtained and their asymptotic

behavior can be calculated. Because of these attractive

features, the homogenization method has been widely adopted

for predicting elastic properties such as Young’s modulus and

optimizing the topology of the composite structure [37]. In the

general homogenization process, a representative volume

element (RVE) is constructed for composites with periodic

structure and the scale parameter relating dimension of the

RVE to that of the entire composite is employed.

In this study, the effective elasticity tensor of the CNT filled

nanocomposite is examined by using the homogenization

method. Effects of aspect ratio and concentration of CNTs on

the elasticity tensor are investigated. In contrast to most of the

previous studies, which used FEM or BEM for the

homogenization method, the control volume finite element

method (CVFEM) is adopted in this study. In order to compare

the numerical results with analytic ones, the analytic model

proposed by Halpin and Tsai [20] is employed. The

numerically predicted axial tensile modulus is also verified

by comparing it with experimental results.
Unit cell

Isotropic heterogenous medium Anisotropic homogenous medium

Homogenization

Fig. 1. Schematic illustration of homogenization method.
2. Homogenization method

2.1. Modeling of effective elasticity tensor

Fig. 2 shows a RVE employed in this study, which consists

of three different regions, i.e. air, CNT, and matrix. The RVE is

constructed based on the following assumptions: (i) the CNTs

are homogeneously dispersed in the nanocomposites with the

square packing, (ii) they are perfectly bonded with the matrix

and have uniform dimensions such as their length, inner, and

outer diameters, (iii) there is no direct interaction between the

adjacent CNTs, (iv) the CNT nanocomposites contain the

periodic unit cell which includes a single CNT aligned

unidirectionally. Small amount of CNTs are loaded in the

nanocomposites so that the above assumptions should be valid.

As shown in Fig. 2, nanocomposites composed of many

periodic unit cells have a characteristic length scale, L, in the

macroscopic scale and the RVE has a characteristic length, l, in

the microscopic scale. An important parameter in
Carbon nanotube

l
Air

Y3

Y1 Y2

Fig. 2. (a) CNT filled nanocomposties with periodic structure and (b)

representative volume element (RVE) with a single carbon nanotube in

microscopic scale.
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the homogenization process is the ratio of these characteristic

lengths, uZl/L. Since the periodic domain, U, is quite small

compared with the entire scale for nanocomposites, u/1. The

RVE containing a single CNT is composed of air, CNT, and

matrix, whose domains are denoted by Ua, Uc, and Um,

respectively. On the other hand, the air region reduces overall

mechanical properties of the RVE because it acts as a void and

has no mechanical properties. In the current study, the

mechanical properties of the air are not taken into account. It

is assumed that the mechanical properties of the CNT and

matrix are linearly elastic, isotropic, and homogeneous. As a

result, the RVE becomes transversely isotropic with five

independent material constants. Two distinct coordinate

systems, i.e. macroscopic scale xi and microscopic scale yi
are adopted in the asymptotic expansion homogenization

(AEH) method and they can describe the macroscopic and

microscopic behaviors of the CNT filled nanocomposites. The

global coordinate system, xi, is related to the local coordinate

system, yi, as shown below.

yi Z
xi
u

(1)

It is assumed that elasticity tensor, Cijkl, of the nanocompo-

site is periodic with respect to yi. The elasticity tensor is

expressed by using the relationship between macroscopic and

microscopic scales as the following.

Cu
ijklðxiÞZCijkl

xi
u

� �
ZCijklðyiÞ (2)

where Cu
ijkl is the periodic function with respect to the

microscopic scale. Eq. (2) allows us to define the macroscopic

material properties in terms of the microscopic ones.

The linear elastic boundary value problem on the RVE is

expressed as follows.

vsuij

vxj
C fi Z 0 in U (3)

uui Z 0 on vU (4)

suij nj ZFi on vU (5)

3ij u
u
i

� �
Z

1

2

vuui
vxj

C
vuuj

vxi

� �
(6)

suij ZCu
ijkl3kl u

u
i

� �
(7)

where vU represents the boundary region and superscript, u,

indicates the real material behavior. sij, 3ij, and ui are the

stress tensor, strain tensor, and displacement vector,

respectively. In the homogenization process, all of the

physical properties are assumed to be periodic with respect

to the local scales, which allows us to decouple the global

and the local scales by using a perturbation technique [38].

Multi-scale asymptotic expansions for the displacement is

given as the following.

uui ðxiÞZ uð0Þi ðxi;yiÞCuuð1Þi ðxi;yiÞCu2uð2Þi ðxi;yiÞC. (8)
where it is assumed that uui ðxi;yiÞ is periodic in local

coordinate system, yi. From the chain rule, differential

operator is expressed as

v

vxi
Z

v

vxi
C

1

u

v

vyi
(9)

By substituting Eq. (9) into Eq. (6), the strain tensor is

rewritten as below.

3ij Z
1

u
3K1
ij ðxi;yiÞC30ijðxi;yiÞCu31ijðxi;yiÞC. (10)

where

3K1
ij ðxi;yiÞZ

1

2

vuð0Þ

vyj
C

vuð0Þ

vyi

� �
(11)

30ijðxi;yiÞZ
1

2

vuð0Þ

vxj
C

vuð0Þ

vxi

� �
C

1

2

vuð1Þ

vyj
C

vuð1Þ

vyi

� �
(12)

3
1
ijðxi;yiÞZ

1

2

vuð1Þ

vxj
C

vuð1Þ

vxi

� �
C

1

2

vuð2Þ

vyj
C

vuð2Þ

vyi

� �
(13)

Combination of Eqs. (3) and (7) yields the following

equation.

v

vxj
Cijkl

xi
u

� �
3kl u

u
i

� �h i
C fi Z 0 (14)

After substitution of the above strain tensor equations

into Eq. (14), The following three hierarchical equations are

obtained by arranging the terms with the same order of u.

v

vyj
Cijkl

vuð0Þk

vyl

" #
Z 0 (15)

v

vxj
Cijkl

vuð0Þk

vyl

" #
C

v

vyj
Cijkl

vuð0Þk

vxl
C

vuð1Þk

vyl

 !" #
Z 0 (16)

v

vxj
Cijkl

vuð0Þk

vxl
C

vuð1Þk

vyl

 !" #
C

v

vyj
Cijkl

vuð1Þk

vxl
C

vuð2Þk

vyl

 !" #
Z 0

(17)

In the homogenization process, the terms with same

order of u should be zero to ensure that the asymptotic

series approximation is valid as u approaches zero. From

Eq. (15), it is assumed that uð0Þk is independent of the local

coordinate system, yi.

uð0Þi ðxi;yiÞZ uð0Þi ðxiÞ (18)

Consequently, the so-called micro-equation (16) takes the

following form.

v

vyj
Cijkl

vuð0Þk

vxl
C

vuð1Þk

vyl

 !" #
Z 0 (19)

Now that the current problem has the linearity, the

perturbation term, uð1Þk , is given through separation of xi
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from yi as below

uð1Þi ðxi;yiÞZKckl
i ðyiÞ

vuð0Þk ðxiÞ

vxl
Cuð1Þi ðxiÞ (20)

where ckl
i is the arbitrary characteristic function with

periodicity with respect to yi. By substituting Eq. (20) into

Eq. (19), the governing equation is obtained as the

following.

v

vyj
CijmnðyiÞ

vckl
mðyiÞ

vyn

� �
K

v

vyj
CijklðyiÞZ 0 (21)

As the strain tensor is approximated in a power series of

u, the stress tensor can be expanded asymptotically as

follows.

suij Z
1

u
sK1
ij ðxi;yiÞCs0ijðxi;yiÞCus1ijðxi;yiÞC. (22)

where

s0ij ZCu
ijkl

vuð0Þk

vxl
C

vuð1Þk

vyl

 !
(23)

By substituting Eq. (20) into Eq. (23), the following

equation is obtained.

s0ij Z CijklKCijmn

vckl
m

vyn

� �
vuð0Þk

vxl
(24)

The effective elasticity tensor, ~Cijkl, is cast as follows by

using the relationship between the homogenized stress and

the displacement gradient tensor.

~s0ij Z ~Cijkl

vuð0Þk

vxl
(25)

where

~s0ij Z
1

U

ð
U

s0ijdy (26)

~Cijkl Z
1

U

ð
U

CijklKCijmn

vckl
m

vyn

� �
dy (27)

Cijkl has different values for each region of the RVE and

the above integration is taken over the entire RVE domain.
Table 1

Properties of matrix and CNT and dimension of the RVE used in the

homogenization process

Matrix CNT

Young’s modulus (GPa) 1.21 270

Shear modulus (GPa) 0.48 107

Poisson’s ratio 0.35 0.3

Dimension Height: 151 nm Outer diameter: 13 nm

Width: 151 nm Inner diameter: 4 nm
2.2. Numerical method

The control volume finite element method (CVFEM) used

in the previous study [39] is adopted to solve a set of the

coupled partial differential equations formed by the governing

Eq. (21). In general, the CVFEM has been applied to heat

transfer and fluid flow problems and has produced encouraging

results compared with the conventional finite element method

(FEM). Since the Eq. (21) has elliptical characteristics, the

CVFEM is chosen as a numerical method. Eq. (21) is expressed
in the general form as the following.

vJj

vyj
Z S (28)

where Ji is the diffusion flux and S is the source term. These are

given by

Jj ZCijmn

vckl
m

vyn
KCijkl (29)

SZ 0 (30)

Because the CVFEM is based on the conservation principle

within control volume, we integrate Eq. (28) over the control

volume as the following.ð
vV

JinidsZ

ð
vV

SdV (31)

where vV is the control surface and ni is the outward unit vector

normal to the differential area, ds. Details of the numerical

method used in the present study are described in the previous

investigation [39].

Mechanical properties of the matrix and the CNT obtained

from experiments and literature [5–8] and dimension of the

RVE are listed in Table 1. In order to investigate the effect of

the aspect ratio, sizes of the RVE and CNT are not kept

constant. Based on the convergence test of finite element mesh,

124,576 elements and 602,423 nodes are used in the

calculation. The periodic boundary conditions are imposed

on the walls of the RVE. It is assumed that the RVE, which

contains an aligned single CNT has transversely isotropic

properties. However, since the CNTs are randomly dispersed in

the nanocomposites, it is necessary to consider orientation of

the CNTs in order to predict material properties of the real

CNT nanocomposites. Therefore, by using orientation aver-

aging which has been utilized in short fiber reinforced

composites, the effective mechanical properties for nanocom-

posites filled with randomly dispersed CNTs are obtained. The

second order orientation tensor proposed by Tucker and

Advani [39] is adopted for describing the orientation state of

CNTs because the tensor representation is compact enough to

handle the overall orientation distribution of the CNTs more

practically than the distribution function, j. The orientation

tensor is defined as the following.

aij Z#pipjjðpÞdp (32)
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where p is the unit vector in the axial direction of CNT and j(p)
is the orientation distribution function.

It is presumed that the CNT and the matrix show linear

elastic behavior and magnitude of the applied stress does not

lead to debonding or cracking. The real nanocomposite is

regarded as an assembly of all the RVE’s, which experience the

same strain regardless of their orientation. The bounding

approach for the elasticity tensor of the nanocomposite, which

is the simple average of the RVE’s over all the directions, is

expressed below.

hCijkliZ#CijklðpÞjðpÞdp (33)

The bulk stress–strain relationship of the nanocomposite is

written in terms of the generalized Hooke’s law.

sij Z hCijkli3kl (34)

The orientation averaging approach is based on the

assumption that the single RVE can stand for the structure of

real nanocomposites. Eq. (33) is denoted by orientation tensors

as below.

hCijkliZB1ðaijklÞCB2ðaijdkl CakldijÞCB3ðaikdjl

Caildjk Cajldik CajkdilÞCB4ðdijdklÞ

CB5ðdikdjl CdildjkÞ (35)

The averaged elasticity tensor has 21 independent com-

ponents and is expressed in terms of the second and fourth

order orientation tensors. Five constants from B1 to B5 are the

invariants, which are calculated from the transversely isotropic

properties of the RVE [40]. Since Eq. (35) contains a fourth

order orientation tensor, approximation of the fourth order

orientation tensor by the second order orientation tensor is

needed. In the present study, we take two cases into account;

unidirectional and random orientation of CNTs. It is known

that the hybrid closure approximation proposed by Advani and

Tucker [41] describes the random and unidirectional orien-

tation states of short fibers properly. In the case of random

orientation, the closure approximation becomes as follows.

aijkl ZK
1

35
ðdijdkl Cdikdjl CdildjkÞC

1

7
ðaijdkl Caikdjl

Caildjk Cakldij Cajldik CajkdilÞ (36)

2.3. Analytic model

It is assumed that the RVE shown in Fig. 2(b) includes a

single CNT surrounded by the matrix of the same volume

fraction as that in the entire nanocomposite and is transversely

isotropic. For the validation of numerically homogenized

elastic properties, the following analytic equation suggested by

Halpin and Tsai [20] is employed.

M

Mm

Z
1C2 ~xfc

1K ~xfc

(37)
~xZ
ðMc=MmÞK1

ðMc=MmÞC2
(38)

where M represents the axial modulus (E1), the transverse

modulus (E2), the in-plane shear modulus (G12) or the out-of-

plane shear modulus (G23). Subscripts c and m denote the CNT

and the matrix, respectively. fc is the volume fraction of CNTs.

2 is defined as follows.

2E1
Z 2

L

D
(39)

2E2
Z 2 (40)

2G12
Z 1 (41)

2G23
Z

Km=Gm

Km=Gm C2
(42)

where L and D are the length and the outer diameter of CNT.

Because the analytic model is proposed for application to the

composites filled with rod-shaped particles such as short fibers,

it has some limitations to shells or hollow structures. Poisson’s

ratio can be obtained by the rule of mixture as below.

n12 Z nfff Cnmð1KfmÞ (43)

n21 and n23 are given from consideration of symmetry

constraints as follows.

n21 Z n12
E2

E1

(44)

n23 Z
E2

2G23

K1 (45)

where the axial direction of CNT is considered as one-direction

in Cartesian coordinate system. The elastic constants obtained

by the above equations have the following relationship with the

elasticity tensor components of the RVE.

C1111 Z
ð1Kn23ÞE1

1Kn23K2n12n21
(46)

C2222 Z
E2

2ð1Kn23K2n12n21Þ
CG23 (47)

C1122 Z
n21E1

1Kn23K2n12n21
(48)

C2233 Z
E2

2ð1Kn23K2n12n21Þ
KG23 (49)

C1212 ZG12 (50)
3. Experimental

It has been reported that chemical functionalization or

surface modification of CNTs improves dispersion of the CNT

and the strength of interfacial bonding between the CNTs and
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the polymer matrix [42]. Therefore, in order to obtain good and

homogeneous dispersion of the CNTs in the epoxy resin, acid

treatment for the CNTs was carried out, which could get rid of

impurities including amorphous carbons, graphite particles,

and metal catalysts. After the CNTs were treated in a 3:1

mixture of 65% H2SO4/HNO3 at 100 8C for 30 min, the treated

CNTs were washed with distilled water and then dried in a

vacuum oven for a day. The acid treatment is known to

introduce hydroxylic functional groups to the surface of CNTs.

Multiwalled carbon nanotubes synthesized by chemical vapor

deposition (CVD) and an epoxy resin were employed. Details

of the preparation process of the specimen were described in

the previous studies [9]. Plasma surface treatment of the CNT

was carried out to improve the interfacial bonding between the

CNTs and the matrix. The surface modification was performed

by using Ar plasma with 1% O2 and the plasma power was

200 W. The nanocomposites filled with CNTs of 0.5 and 1.0%

volume fraction (0.29 and 0.58% volume fraction, respect-

ively) were prepared and mechanical tests were conducted to

obtain mechanical properties by using Instron 5548. For

averaging of the data, at least five samples were prepared at

each CNT weight fraction. The tensile experiments were

performed at ambient temperature and at the constant cross-

head speed of 2 mm/min. In order to identify the surface

elemental composition, X-ray photoelectron spectroscopy

(XPS) was utilized. From shifting of main peak, the existence

of oxygen bonding to the CNT was verified. The CNT

dispersion was morphologically characterized through a

FESEM (JEOL JSM-6330F).
4. Results and discussion

Plasma surface treatment is carried out in order to enhance

the interfacial bonding between the CNTs and the matrix

because perfect interfacial bonding between the CNTs and the

matrix is assumed in the homogenization. Fig. 3 represents that

the CNTs are dispersed in the matrix homogeneously. It is

shown by the FESEM image that the CNTs are not pulled out
Fig. 3. FESEM image of the nanocomposites filled with carbon nanotubes.
but broken due to the strong interfacial bonding between the

CNTs and the epoxy resin when tensile force is imposed. It is

believed that the oxygen group generated on the CNT surface

by the plasma treatment causes good dispersion and strong

interfacial bonding. Eq. (34), the generalized Hook’s law, can

be rewritten in the following contracted notation form [43].

si ZCij3j i; jZ 1;.;6 (51)

When the CNTs are added in the epoxy resin, the

homogenized elasticity tensor calculated for a RVE is given

by the following stiffness matrix.

Cij Z

5:02 0:64 0:64 0 0 0

0:64 1:60 0:43 0 0 0

0:64 0:43 1:60 0 0 0

0 0 0 0:58 0 0

0 0 0 0 0:48 0

0 0 0 0 0 0:48

2
66666666664

3
77777777775
GPa (52)

The elasticity tensor represents large anisotropy for elastic

properties of the RVE.
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Fig. 4 shows C1111 component of the effective elasticity

tensor obtained by the homogenization technique and Halpin–

Tsai equation. When the CNTs are aligned unidirectionally in

the nanocomposite, the homogenization method exhibits the

same prediction as the analytic model. On the other hand, in the

case that the CNTs are randomly oriented, the averaged C1111

obtained by using orientation tensor is quite lower than that

calculated for the RVE. As shown in Fig. 4, the C1111

component is linearly increased with respect to the CNT

volume fraction because small volume fraction of the CNT is

considered in this study. The C2222 component of the effective

elasticity tensor is represented in Fig. 5. The results obtained

analytically are slightly higher than those calculated numeri-

cally for the nanocomposites filled with unidirectionally

dispersed CNTs. In contrast to the C1111, the C2222 obtained

for random orientation of CNTs is much higher than that

calculated for the RVE containing an axially oriented CNT.

Fig. 6 shows variation of the C1212 component as a function of

CNT volume fraction. It is found that the shear modulus is

nearly independent of the CNT volume fraction for the

nanocomposites embedded with unidirectionally aligned

CNTs. The Halpin–Tsai equation provides a good approxi-

mation because the equation is a semi-empirical function.
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Fig. 7. Axial tensile moduli predicted with respect to the CNT volume fraction.
In order to validate the results calculated by the

homogenization method, experimental results are compared

with them as shown in Fig. 7. The measured axial tensile

modulus is somewhat different from that predicted by the

homogenization method. The discrepancy is attributed to the

following two reasons. One is that all of the CNTs are assumed

to be straight in the nanocomposites, although waviness of the

CNT affects mechanical properties of the nanocomposites. The

other reason is that accurate material properties of CNTs are

not used as input parameters in the homogenization process.

There are limitations and difficulties in measuring exact

material data of the CNTs used in the nanocomposites. In

order to investigate the effect of the aspect ratio of CNT on the

axial modulus, length of the CNT in the RVE is altered. As

shown in Fig. 8, the axial tensile modulus is varied with respect

to the aspect ratio of CNT. The analytically obtained modulus

is higher than the homogenized modulus and both of them

approach a limiting value gradually, i.e. the modulus obtained

by the rule of mixture is increased with respect to the aspect

ratio. Findings from comparison between numerical and

experimental results indicate that the bounding approach by

the orientation tensor is an efficient method considering the

contribution of the randomly oriented CNTs in the

nanocomposites.
5. Conclusions

Modeling of elastic properties of the nanocomposies

embedded with CNTs is carried out by using the homogeniz-

ation technique. Assuming that the CNT/epoxy nanocompo-

sites have geometrical periodicity with respect to microscopic

scale, a representative volume element (RVE) is constructed

for the asymptotic expansion homogenization (AEH) method.

The control volume finite element method (CVFEM) is

adopted in order to implement the homogenization method

unlike the previous studies. The epoxy nanocomposites filled

with plasma treated CNTs are prepared to enhance the

interfacial bonding between the CNTs and the matrix and

mechanical measurements are carried out to obtain axial tensile

modulus of the nanocomposites. The effective elasticity tensor
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predicted by the homogenization method is compared with

analytical and experimental results. The bounding approach

using the orientation tensor is adopted to consider orientation

state of the CNTs. It is observed that the homogenized

elasticity tensor is in good agreement with the results obtained

from Halpin–Tsai equation and is linearly increased with

respect to the CNT volume fraction. As the aspect ratio of CNT

is increased, the homogenization technique provides higher

axial tensile modulus than the analytic model and the moduli

obtained by both methods approach the upper limiting value

obtained by the rule of mixture. In the homogenization process,

material properties used as input parameters are critical to

calculate the exact physical properties of the heterogeneous

medium. The homogenization method possesses a large

potential for the prediction of such physical properties as

elastic modulus and thermal conductivity of heterogeneous

composite materials because the method can handle the

geometrical complexity and material anisotropy properly.
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